
www.manaraa.com

Mesh Partitioning for Distributed Systems

Jian Chen Valerie Taylor
Northwestern University

Department of Electrical and Computer Engineering
Evanston, IL 60208fjchen,taylorg@ece.nwu.edu

Abstract

Distributed systems, which consist of a collection of high
performance systems interconnected via high performance
networks (e.g. ATM), are becoming feasible platforms for
execution of large-scale, complex problems. In this paper,
we address various issues related to mesh partitioning for
distributed systems. These issues include the metric used
to compare different partitions, efficiency of the application
executing on a distributed system, the number of cut sets,
and the advantage of exploiting heterogeneity in network
performance. We present a tool called PART, for automatic
mesh partitioning for distributed systems. The novel feature
of PART is that it considers heterogeneities in the applica-
tion and the distributed system. The heterogeneities in the
distributed system include processor and network perfor-
mance; the heterogeneities in the application include com-
putational complexities. Preliminary results are presented
for partitioning regular and irregular finite element meshes
for the WHAMS2D application executing on a distributed
system consisting of two IBM SPs. The results from the reg-
ular problems indicate a33 � 46% increase in efficiency
when processor performance is considered as compared to
the conventional even partitioning; the results also indicate
an additional5� 16% increase in efficiency when network
performance is considered. The result from the irregular
problem indicate a21% increase in efficiency when proces-
sor and network performance are considered as compared
to even partitioning.

1 Introduction

Mesh partitioning for homogeneous systems has been
studied extensively [1, 2, 5, 15, 17, 18, 24]; however, mesh
partitioning for distributed systems is a relatively new area
of research. To ensure efficient execution on a distributed
system, the heterogeneities in the processor and network
performance must be taken into consideration in the par-

titioning process; equal size subdomains and small cut set
size, which results from conventional mesh partitioning, are
no longer the primary goals. For distributed systems, the
primary goals involve exploiting the system heterogeneities.
In this paper, we discuss the major issues in mesh parti-
tioning for distributed systems. These issues include the
comparison metric, efficiency, cut sets, and exploiting het-
erogeneity in network performance. We also present PART,
a mesh partitioning tool for distributed systems along with
some preliminary results.

Distributed computing has been unequivocally regarded
as the future of high performance computing. Nation-
wide high speed networks such as vBNS [13] are becom-
ing widely available to interconnect high speed computers
at different sites. Work is in progress to make available
a National Technology Grid which will entail a scalable
distributed computational fabric connecting supercomput-
ers, virtual environments, scientific instruments, and large
datasets [21]. Projects such as Globus [6] and Legion [10]
are developing software infrastructure for computations that
integrate distributed computational and informational re-
sources.

Mesh partitioning is used for efficient parallel execution
of mesh-based applications, which use techniques such as
finite element and finite difference. These techniques are
widely used in many disciplines such as biomedical engi-
neering, structural mechanics, and fluid dynamics. These
applications are distinguished by the use of a meshing pro-
cedure for discretizing the problem domain. Implement-
ing a mesh-based application on a parallel or distributed
system involves partitioning the mesh into subdomains that
are assigned to individual processors in the parallel or dis-
tributed system. For a distributed system, a desirable parti-
tioning method should take into consideration various het-
erogeneous features of the systems. PART takes advantage
of the following heterogeneous system features: (1) pro-
cessor speed; (2) number of processors; (3) local network
performance; (4) wide area network performance. Further,
different mesh-based applications may have different com-

www.manaraa.com

putational complexities, different communication patterns,
and different element types, which also must be taken into
consideration when partitioning.

In [22], we presented a manual method of mesh parti-
tioning for distributed systems; in [23], we presented an au-
tomatic mesh partitioning tool, PART. In this paper, how-
ever, we focus on the theoretical framework of mesh par-
titioning for mesh-based applications on a distributed sys-
tem. In particular, we identify a good metric to be used
to compare different partitioning results, present a measure
of efficiency for a distributed system, discuss restrictions
on the cut set for remote communication, and identify the
conditions for which it is advantageous to consider hetero-
geneities in network performance in addition to processor
performance.

The metric used with PART to identify good efficiency
is estimated execution time. PART was used to partition
regular and irregular meshes for a 2-D explicit finite ele-
ment application, WHAMS2D, for execution on two IBM
SPs located at geographically different sites: Argonne Na-
tional Laboratory and Cornell Theory Center. For the regu-
lar meshes with 10368 elements, the initial results indicate
an efficiency of0:61 � 0:67 when only processor perfor-
mance is considered, as compared to0:46 � 0:47 for con-
ventional methods. When heterogeneity in both processor
and network performance were considered, the efficiency
was0:68 � 0:71, which is a substantial increase over the
conventional methods of equal size subdomains and small
cut set size. For the irregular mesh Barth4 with 11451 ele-
ments, the initial results indicate an efficiency of0:85 when
both processor and network performance were considered,
as compared to an efficiency of0:70 for conventional meth-
ods.

The remainder of the paper is organized as follows: Sec-
tion 2 provides background. Section 3 discusses issues.
Section 4 describes PART in detail. Section 5 is experi-
mental results. Section 6 gives previous work and finally
conclusion.

2 Background2.1 Mesh Based Applications
Finite element method has been a fundamental numeri-

cal analysis technique to solve partial differential equations
in the engineering community for the past three decades.
The method includes three basic procedures. The problem
is first formulated in variational or weighted residual form.
In the second step, the problem domain is discretized into
complex shapes called elements. The last major step is to
solve the resulting system of equations. The procedure of
discretizing the problem domain is called meshing. Appli-
cations that involves a meshing procedure are referred to

as mesh-based applications. In addition to finite element
method, finite difference method and finite volume method
also utilize a meshing procedure. The meshing procedure
is an important first step in the analysis, especially when
complex geometries are considered. The quality of the nu-
merical results is strongly linked to the quality of the corre-
sponding mesh; finer meshes result in more accurate results.

Mesh based applications are naturally suited for par-
allel or distributed systems. Implementing the finite ele-
ment method in parallel involves partitioning the global do-
main of elements intoP connected subdomains that are dis-
tributed amongP processors; each processor executes the
numerical technique on its assigned subdomain. The com-
munication among processors is dictated by the types of
integration and solver methods. Explicit integration finite
element problems do not require the use of a solver since
a diagonal matrix (the lumped matrix) is used. Therefore,
communication only occurs among neighboring processors
that have common data and is relatively simple. For im-
plicit integration problems, however, communication is de-
termined by the type of solver used in the application. The
application used in this paper is an explicit, nonlinear finite
code, called WHAMS2D [3], which is used to analyze elas-
tic plastic materials. While we focus on the WHAMS2D,
the concepts can be generalized to other mesh-based appli-
cations.2.2 Distributed System

Distributed computing consists of a platform with a net-
work of resources. These resources maybe clusters of
workstations, cluster of personal computers, or parallel ma-
chines. Further, the resources maybe located at one site or
distributed among different sites. Figure 1 shows an exam-
ple of a distributed system.

Supercomputer
(eg. IBM SP or
Cray T3D)

Supercomputer
(eg. IBM SP or
Cray T3D)

Network

SMPs

Supercomputer
(eg. IBM SP or
Cray T3D) Cluster of

Workstations

Figure 1. A distributed system.

www.manaraa.com

Distributed systems provide an economical alternative
to costly massively parallel computers. Researchers are
no longer limited to the computing resources at individ-
ual sites. The distributed computing environment also pro-
vides researchers opportunities to collaborate and share
ideas through the use of collaboration technologies.

In a distributed system, we define“group” as a set of
processors that share one interconnection network and have
the same performance. A group can be an SMP, a parallel
computer, or a cluster of workstations. Communication oc-
curs both within a group and between groups. We refer to
communication within a group as“intra” group communi-
cation, and communication between processors in different
groups as“inter” group communication.2.3 Problem Formulation

Mesh partitioning for homogeneous systems can be
viewed as a graph partitioning problem; the goal of the
graph partitioning problem is to find a small vertex sepa-
rator andequal sized subsets. Mesh partitioning for dis-
tributed systems, however, is a variation of the graph par-
titioning problem; the goal differs in that equal sized sub-
sets may not be desirable. The partitioning problem for dis-
tributed systems can be stated as follows:

Given a graphG = (V;E), with jV j = n for positive
integern, and weightsw(v) 2 Z+ for eachv 2 V andl(e) 2 Z+ for eache 2 E, partitionV into k � n subsets,V1; V2; :::; Vk, such thatVi\Vj = ; for i 6= j,S1�i�k Vi =V , and

Pki=1 (fi)2 � J , whereJ is a positive integer, andfi is a function ofw(v) with v 2 Vi andl(e) with e being
the edge that has one end point inVi and the other end point
in Vj , j 6= i.

In this paper, the cost functionfi is an estimate of the
execution time of partitioni of a given application on a
distributed system. Minimizing the sum of squares offi,1 � i � k, minimizes the variance of the execution time
of all the processors, thereby resulting in balanced execu-
tion among the processors. This cost function is discussed
further in [23].

The partitioning problem for distributed system is NP-
complete; the proof is given in the Appendix. Therefore,
we focus on heuristics to solve this problem.2.4 Nomenclature

Throughout this paper, the following nomenclature is
used:

Ei – Estimated execution time on processori.Ecompi – Estimated computational time on
processori.Ecommi – Estimated communication time on
processori.Fi – Performance of processori as measured
by a computation kernel.�Li – Per message cost of thei-th
intra group message.�Ri – Per message cost of thei-th
inter group message.�Li – Per byte cost of thei-th
intra group message.�Ri – Per byte cost of thei-th
inter group message.Li – Size of thei-th intra group message.Ri – Size of thei-th inter group message. – Coefficient of computational complexity.� – Parameter used to equalize the
contribution of the computation
and communication to execution timeN ielem – Number of elements in partition i.N iinterface – Number of interface elements in
partition i.Ne – Number of elements.

3 Major Issues

In this section, we discuss the following major issues re-
lated to the mesh partitioning problem for distributed sys-
tems: comparison metric, efficiency, conditions for which
network performance need to be considered, and number of
cuts between groups.3.1 Comparison Metric

The de facto metric for comparing the quality of differ-
ent partitions has been minimum interface (or cut set) size
assuming equal size partitions. Although there have been
counter examples [5], this metric has been used extensively
in comparing the quality of different partitions. It is obvi-
ous that equal subdomain size and minimum interface is not
valid for comparing partitions for distributed systems.

One may consider an obvious metric for a distributed
system to be unequal subdomains (proportional to proces-
sor performance) and small cut set size. The problem with
this metric is that heterogeneity in network performance is
not considered. Given the local and wide area networks are
used in distributed systems, it is the case that there maybe a
large difference between intra and inter group communica-
tion, especially in terms of latency. This difference must be
considered to achieve efficient execution.

www.manaraa.com

We argue that the use of an estimate of execution time of
the application on the target heterogeneous system will al-
ways lead to a valid comparison of different partitions. The
task of getting an accurate estimate of execution time for
an application on a given distributed system maybe diffi-
cult. However, the estimate is used for relative comparison
of different partition methods. Hence the focus is not on the
accuracy of the estimate, rather it is the relative comparison
that makes the estimate useful. It is important to make the
estimate representative of the application and the system.
The estimate should take into consideration the system het-
erogeneities such as processor performance, intra and inter
group communication. It should also reflect the application
computational complexity.3.2 Efficiency

An important issue is how efficient is the execution of
the application on a distributed system. For the case of
homogeneous machines, efficiency is the ratio of the rel-
ative speedup to perfect speedup. The efficiency for the dis-
tributed system, however, is complicated by the fact that
the system includes processors with different performance.
Therefore, the efficiency for the distributed system is equal
to the ratio of the relative speedup to the effective number
of processors,V . This ratio is given as follows:Efficiency = E(1)E � VE(1) is the sequential execution time on one processor;E
is the execution time on the distributed system. The termV is equal to the summation of each processor’s perfor-
mance relative to the performance of the processor used for
sequential execution. This term can be written as follows:V = PXi=1 FiFk
where k is the processor used for sequential execution.
For example, with two processors having processor perfor-
manceF1 = 1 andF2 = 2 (in relative terms), the efficiency
would beEfficiency = E(1)E�3 if processor 1 is used for se-

quential execution; the efficiency isEfficiency = E(1)E�1:5
if processor 2 is used for sequential execution.3.3 Heterogeneous Networks

It is well-known that heterogeneity of processor perfor-
mance must be considered with distributed systems. In this
section, we identify conditions for which heterogeneity in
network performance must be considered. This is achieved
by considering a simple case, stripe partitioning, for which

communication occurs with at most two neighboring pro-
cessors. Assume there exists two groups having the same
processor and local network performance; the groups are
located at geographically distributed sites requiring a WAN
for interconnection. Figure 2 illustrates one such case.

....

local communicationlocal communication

remote communicationN processors

i

Group 1 Group 2

j

Figure 2. Communication Pattern for StripePartitioning.
Processori (as well as processorj) requires local and re-

mote communication. The difference between the two com-
munication times is:CR � CL = x%E
wherex is the percentage of the difference ofCR andCL
in the total execution timeE. Assume thatE represents
the execution time taking into consideration only processor
performance. Since it is assumed that all processors have
the same performance, this entails an even partition of the
mesh. This time can be written as:E = CL + CR + Ecomp = 2CL + x%E +Ecomp:

Now consider the case of partitioning to take into con-
sideration the heterogeneity in network performance. This
is achieved by decreasing the load assigned to processori
and increasing the loads of theN � 1 processors in group
1. The same applies to processorj in group 2. The amount
of the load to be redistributed isCR �CL or x%E and this
amount is distributed toN processors. This is illustrated in
Figure 4, which is discussed with the retrofit step of PART.
The execution time is now:E0 = 2CL + xN%E +Ecomp:
The difference betweenE andE0 is:�E = E �E0 = x%E � xN%E = N � 1N x%E ' x%E
Therefore, by taking the network performance into consid-
eration when partitioning, the percentage reduction in exe-
cution time is approximatelyx. The percentagex is deter-
mined by (1) the percentage of communication in the ap-
plication (y) and (2) the difference in the remote and local

www.manaraa.com

communication (z). Both factors are determined by the ap-
plication and the partitioning.

For the WHAMS2D application,y is0:10, andz is10 for
vBNS (corresponding to an order of magnitude difference
between the IBM SP Vulcan switch and vBNS). For this
case, considering heterogeneity in network performance did
not provide any significant increase in efficiency beyond
that equal to variance in the results. However, with the In-
ternet, having two orders of magnitude difference, consid-
ering network performance provided an additional5� 17%
increase in efficiency as compared to only considering pro-
cessor performance. Hence, for this application, commu-
nication was a small fraction of the overall execution, but
the large difference in network latencies resulted in per-
formance improvements when considering heterogeneity in
networks.

The WHAMS2D application uses explicit integration,
which entails very simple communication. Implicit meth-
ods, however, entails more complex communication pat-
terns. In this case it maybe advantageous to exploit het-
erogeneity in network performance even with vBNS.3.4 Number of Cuts Between Groups

Once a cut has been made between groups, care must be
taken when partitioning around this cut within a group. This
is a major issue because of the large difference in latency
between local and wide area networks. In particular, for
the processor(s) that requires remote communication, care
must be taken to reduce the number of remote processors
with which this processor must communicate. For exam-
ple, with the IBM SP, the latency of the Vulcan switch for
MPI communication is0:9 ms as compared to10 ms for the
vBNS network between Argonne National Laboratory and
Cornell Theory Center (an order of magnitude difference).
When this difference is large, it is advantageous to decrease
the number of messages sent remotely, thereby decreasing
latency; this may result in an increase in the number of mes-
sages sent within a group. This tradeoff must be considered
when partitioning.

4 PART

PART considers heterogeneities in both the application
and the system. In particular, PART takes into considera-
tion that different mesh-based applications may have differ-
ent computational complexities and the mesh may consist
of different element types. For distributed systems, PART
takes into consideration heterogeneities in processor and
network performance.

Figure 3 shows a flow diagram of PART, which consists
of an interface program and a partitioning program. The
input to PART is a mesh that is transformed to a weighted

communication graph. This communication graph is used
by the partitioning program to produce the desired subdo-
mains for execution on a distributed system. The parti-
tioning program uses simulated annealing for the required
retrofitting steps discussed below. While it is well known
that simulated annealing is computationally intensive, it is
used with the initial version of PART to provide the neces-
sary local and global optimizations. We are currently inves-
tigating the use of parallel simulated annealing methods to
significantly reduce execution time.

problem domain

PART partitioned data

Finte element mesh
(problem domain)

Interface
Program

Weighted

graph
comm.

Interface
Program

Input to
processors

Partitioned
graphSimulated

Annealing

of groups

of processors/group

computational models

communication models

Figure 3. PART owchart.4.1 Mesh Representation
The first component of PART converts an input mesh

into a weighted communication graph (WCG). In the WCG,
each vertex represents an element, and the weight on each
vertex represents the number of nodes in the element. Each
edge in the WCG indicates that the element shares nodes
with a neighboring element. The weight on an edge repre-
sents the number of nodes the neighboring elements share.
The WCG graph allows for ease of estimation of execution
time since message size can be accurately represented for
the case when the mesh consists of different element types.4.2 Partition Method

The partitioning component of PART entails three steps:

1. The first step generates a coarse partitioning for the
distributed systems. Each group gets a subdomain that
is proportional to its number of processors, the perfor-
mance of the processors, and the computational com-
plexity of the application. Hence computational cost is
balanced across all the groups.

2. In the second step, the subdomain that is assigned to
each group from Step 1 is partitioned among its proces-
sors. Within each group, simulated annealing is used
to balance the execution time. In this step, variance

www.manaraa.com

in network performance is considered. Processors that
perform inter group communication will have reduced
computational load to compensate for the longer com-
munication time.

The step is illustrated in Figure 4 for two supercom-
puters (or groups), SC1 and SC2, with four processors
used for SC1 and two for SC2. The figure contains the
load on the four processors of SCI. On the left side, the
computational load is equal across the four processors
since they have the same performance. For this case
processorP3 has a large execution time because of the
need to communicate remotely as well as locally. The
right side displays the results after a retrofit step, in
which part of the computational load has been removed
from processorP3 (�) and redistributed to the other
three processors to equalize the execution time (�=4).
Assuming the cut size remains unchanged (the com-
munication time will not change) the execution time
will be balanced after this shifting of computational
load.

0 1 2 3 4 5

comp. comm.
p0

p1

p2

p3

p0

p1

p2

p3

comp.

retrofit

SC 1 SC 2

SC 1 SC 1

δ

δ/4

 comm.

Figure 4. An illustration of the retrofit stepfor two supercomputers assuming only twonearest neighbor communication.
3. The third step takes into consideration differences in

the local interconnect performance of various groups.
Again, the goal is to minimize the variance of the exe-
cution time across all processors. In this step, elements
on the boundaries of partitions are moved according to
the execution time variance between neighboring pro-
cessors. This step is only executed if there is a “large”
difference in the performance of the different local in-
terconnects. “Large” is defined by the users. The de-
fault value is10%. For the case when a significant
number of element is moved between the groups in
Step 3, the second step is executed again to equalize
the execution time in a group given the new computa-
tional load.

5 Experiments

PART was applied to an explicit, nonlinear finite code
called WHAMS2D [3]. The code uses MPI built on top
of Nexus for interprocessor communication within a super-
computer and between supercomputers. Nexus is a runtime
system that allows for multiple protocols within an applica-
tion [7]. The computational complexity of WHAMS2D is
linear with the size of the problem.

The code was executed on the IBM SP machines located
at Argonne National Laboratory and the Cornell Theory
Center. These two machines are connected by the Internet.
Macro benchmarks were used to determine the network and
processor performance. The results of the network perfor-
mance analysis are given in Table 1. Further, experiments
were conducted to determine that the Cornell nodes were
1.6 times faster than the Argonne nodes.Table 1. Values of � and � for the differentnetworks.

Argonne SP Switch �1 = 0:0009s �1 = 0:0001 s/KB
Cornell SP Switch �2 = 0:0006s �2 = 0:0001 s/KB

Internet �4 = 0:1428s �4 = 0:0507 s/KB

The problem mesh consists of 3 regular meshes and one
irregular mesh, barth4 with 11451 elements. Barth4 is a un-
structured 2-dimensional finite element meshes of airfoils.
The execution time is given for 100 time steps correspond-
ing to 0.005 seconds of application time. The recorded ex-
ecution time represents over 100 runs, taking the data from
the runs with standard deviation less than3%.

The regular problems were executed on a machine con-
figuration of 8 processors (4 at ANL IBM SP and 4 at CTC
IBM SP). The irregular problem barth4 was executed on a
machine configuration of 4 processors (2 at ANL IBM SP
and 2 at CTC IBM SP). The number of processors was dic-
tated by availability.

Table 2 presents the results for the regular problems.
Column 1 is the mesh configuration. Column 2 is the ex-
ecution time resulting from the conventional equal parti-
tioning using spectral bisection in the Chaco package [11].
Column 3 is the result from the partitioning for which the
heterogeneity in processor performance and computational
complexity are considered. Column 4 is the execution time
resulting from the partitioning for which the heterogeneity
in network and processor performance are considered. The
results in Table 2 shows that approximately33 � 46% in-
crease in efficiency can be achieved by balancing the com-
putational cost; another5 � 16% efficiency increase can

www.manaraa.com

Table 2. Execution time using the Internet 8processors: 4 at ANL, 4 at CTC
Case Chaco Proc. Perf. Local Retrofit9� 1152 mesh 102.99 s 78.02 s 68.81 sefficiency 0.46 0.61 0.7118� 576 mesh 101.16 s 78.87 s 72.25 sefficiency 0.47 0.61 0.6836� 288 mesh 103.88 s 73.21 s 70.22 sefficiency 0.46 0.67 0.70

be achieved by considering the variance in network perfor-
mance. The small increase in efficiency for considering the
network performance is attributed to the fact that communi-
cation is only10% of the execution time.

The global optimization step, which is the last step of
PART that balances execution time across all supercom-
puters, was not executed because the difference in the two
switches is small (less than10%). This is expected since the
two supercomputer we used, the Argonne IBM SP and the
Cornell IBM SP, both have interconnection networks that
have very similar performance as indicated in Table 1.Table 3. Execution time (in seconds) using theInternet on 4 processors: 2 at ANL, 2 at CTC.

Case Chaco Proc. Perf. & Local Retrofit
barth4 203.88 sec. 166.92 sec.

efficiency 0.70 0.85

Table 2 presents the results for the irregular problem
barth4. Column 1 is the mesh configuration. Column 2 is
the execution time resulting from the conventional even par-
titioning that uses spectral bisection. Column 3 is the execu-
tion time resulting from the partitioning taken from PART
considering network and processor performance . The re-
sults in Table 2 shows that21% increase in efficiency can
be achieved by taking the system as well as application fea-
tures into consideration when partitioning.

6 Previous Work

Significant work has been done with developing mesh
and graph partitioning methods. The well-known algo-
rithms include: Kernighan-Lin [15], Greedy [5], Recursive
Coordinate Bisection (RCB) [2], Recursive Inertial Parti-

tioning (RIP) [16], Recursive Graph Bisection (RGB) [9],
Recursive Spectral Bisection (RSB) [18], and multilevel
methods used with Greedy and RSB [12, 14]. Most
of the aforementioned decomposition methods are imple-
mented in one of the five automated tools: Chaco [11],
TOP/DOMDEC [19], JOSTLE [25], METIS [14], and
HARP [20]. The original goal of these tools is to develop a
partition with equal size subdomains and small cut set size.
Modifications can be made to the input of most of these
tools to take into consideration processor performance. This
modification entails calculating the percentage of the do-
main to be assigned to each processor prior to using the
tools. This calculation, however, is not required with PART.
Further, the retrofit needed to take into consideration dif-
ference in network performance, is not achievable with the
given tools.

A partitioning advisory system was presented in [4] for
network of workstations. The advisory system takes into
consideration the variance in processor performance among
the workstations. The problem, however, is that linear com-
putational complexity is assumed for the application. This
is not the case with implicit finite element problems, which
are widely used. Further, only regular problems were con-
sidered. PART works with irregular as well as regular
meshes.

7 Conclusion

In this paper, we addressed issues in mesh partitioning
for distributed systems. These issues include the metric
used to compare different partitions, efficiency of the ap-
plication executing on the distributed system, the number
of cut sets, and the advantages of exploiting heterogeneity
in network performance. In particular, estimated execution
time was suggested for the comparison metric; we also de-
rived a formula for efficiency that takes into account het-
erogeneity in processor performance. In terms of hetero-
geneous networks, one must consider the difference in the
network performance as well as the application communi-
cation requirements to determine if the networks must be
considered. For the WHAMS2D application, it was advan-
tageous to exploit the heterogeneous networks when there
was a two orders of magnitude difference. Lastly, the num-
ber of cut sets between groups must be minimized when
possible.

We present the PART tool, which incorporates the afore-
mentioned issues into a tool for mesh partitioning. The
novel feature of PART is that it considers heterogeneities
in both the application and the distributed system. Prelimi-
nary results are presented for partitioning 3 regular meshes
and an irregular finite element mesh for the WHAMS2D
application executing on a distributed system consisting of
two supercomputers. The results from the regular problems

www.manaraa.com

indicate a33 � 46% increase in efficiency when processor
performance is considered as compared to even partition-
ing; the results also indicate an additional5� 16% increase
in efficiency when network performance is considered. The
result from the irregular problem indicate a21% increase
in efficiency when processor and network performance are
considered as compared to even partitioning. These results
indicates the need to consider heterogeneity in processor
and network performance, and heterogeneity in application
computational complexity when partitioning mesh on dis-
tributed systems.

8 Acknowledgments

This work was supported by a NSF Young Investigator
Award, contract number CCR-9357781, and a grant from
AlliedSignal, Inc.

References

[1] Stephen T. Barnard and Horst D. Simon. A fast mul-
tilevel impelementation of recursive spectral bisec-
tion for partitioning unstrctured problems. Techni-
cal report, NAS systems Division, Applied Research
Branch, NASA Ames Research Center, 1993.

[2] M. Berger and S. Bokhari. A partitioning strategy
for non-uniform problems on multiprocessors.IEEE
Transactions on Computers, C-36:5, 1987.

[3] H. C. Chen, H. Gao, and S. Sarma. WHAMS3D
project progress report PR-2. Technical Report 1112,
University of Illinois CSRD, 1991.

[4] Phyllis E. Crandall and Michael Quinn. A partitioning
advisory system for network data-parallel processing.
Concurrency: Practice and Experience, 7(5):479–
495, August 1995.

[5] Charbel Farhat and Micel Lesoinne. Automatic par-
titioning of unstructured meshes for the parallel solu-
tion of problems in computational mechanics.Interna-
tional Journal for Numerical Methods in Engineering,
36:745–764, 1993.

[6] I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk,
G. Thiruvathukal, and S. Tuecke. A wide-area imple-
mentation of the Message Passing Interface.Parallel
Computing, 1998. to appear.

[7] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke.
Multimethod communication for high-performance
networked computing systems.Journal on Parallel
and Distributed Computer, to appear.

[8] M.R. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, New
York, 1979.

[9] A. George and J. Liu.Computer Solution of Large
Sparse Positive Definite Systems. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1981.

[10] Andrew S. Grimshaw, Wm. A. Wulf, and the Le-
gion team. The legion vision of a worldwide virtual
computer. Communications of the ACM, 40(1), Jan-
uary 1997.

[11] B. Hendrickson and R. Leland. The chaco user’s
guide. Technical Report SAND93-2339, Sandia Na-
tional Laboratory, 1993.

[12] B. Hendrickson and R. Leland. A multilevel algorithm
for partitioning graphs. Technical report, Sandia Na-
tional Laboratories, June 1993.

[13] J. Jamison and R. Wilder. vbns: The internet fast lane
for research and education.IEEE Communications
Magazine, January 1997.

[14] George Karypis and Vipin Kumar. A fast and high
quality multilevel scheme for partitioning irregular
graphs. Technical report, Department of Computer
Science,University of Minnesota, 1995.

[15] B. Kernighan and S. Lin. An efficient heuristic pro-
cedure for partitioning graphs.Bell System Technical
Journal, 29:291–307, 1970.

[16] B. Nour-Omid, A. Raefsky, and G. Lyzenga. Solving
finite element equations on concurrent computers. In
A. K. Noor, editor,Parallel Computations and Their
Impact on Mechanics. ASME, 1987.

[17] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Par-
titioning sparse matrices with eigenvectors of graphs.
SIAM J. Matrix Anal. Appl., 11(3):430–452, July
1990.

[18] Horst D. Simon. Partitiong of unstructured problems
for parallel processing.Computing Systems in Engi-
neering, 2(2/3):135–148, 1991.

[19] Horst D. Simon and Charbel Farhat. Top/domdec:
a software tool for mesh partitioning and parallel
processing. Technical report, Report RNR-93-011,
NASA, July 1993.

[20] Horst D. Simon, Andrew Sohn, and Rupak Biswas.
Harp: A fast spectral partitioner. InProceedings of
the Ninth ACM Symposium on Parallel Algorithms
and Architectures, Newport, Rhode Island, June 22-25
1997.

www.manaraa.com

[21] Larry Smarr. Toward the 21st century.Communica-
tions of the ACM, 40(11):28–32, November 1997.

[22] Valerie E. Taylor and Jian Chen. A decomposition
method for efficient use of distributed supercomputers
for finite element applications. InProceedings of the
10th International Conference on Application-specific
Systems, Architectures and Processors, Chicago, Illi-
nois, August 1996.

[23] Valerie E. Taylor and Jian Chen. Part: A partition-
ing tool for efficient use of distributed systems. In
Proceedings of the 11th International Conference on
Application-specific Systems, Architectures and Pro-
cessors, Sweden, August 1997.

[24] D. Vanderstraeten, C. Farhat, P. S. Chen, R. Keunings,
and O. Zone. A retrofit based methodology for the
fast generation and optimization of large-scale mesh
partitions: Beyond the minimum interface size crite-
rion. Technical report, Center for Aerospace Struc-
tures, University of Colorado, September 1994.

[25] C. Walshaw, M. Cross, and M. Everett. Parallel
dynamic graph partitioning for adaptive unstructured
meshes.J. Par. Dist. Comput., 47(2):102–108, 1997.

Appendix
Claim 1 Partition problem for distributed systems is NP-
complete.

Proof 1 We transform a proven NP-Complete problem,
MINIMUM SUM OF SQUARES [8], to the Partition prob-
lem for distributed systems. Let setA , with jAj = n, and a
sizes(a) 2 Z+ for eacha 2 A be an arbitrary instance of
MINIMUM SUM OF SQUARES. We shall construct a graphG = (V;E), with jV j = n, such that the desired partition
exists forG if and only ifA has ak, k � n, partition with
minimum sum of squares.

The basic units of MINIMUM SUM OF SQUARES in-
stance areai 2 A, 1 � i � n. The local replacement
substitute for eachai 2 A is the collectionEi of 3 edges
shown in Figure 5. Therefore,G = (V;E) is defined as the
following: V = AS n[i=1fai[j] : 1 � j � 2gE = n[i=1Ei

It is easy to see this instance of Partition problem for
distributed systems can be constructed in polynomial time
from the MINIMUM SUM OF SQUARES instance.

ai[1] ai[2]

aiFigure 5. Local replacement for ai 2 A fortransforming MINIMUM SUM OF SQUARES toPartition problem for distributed systems.
If A1; A2; :::; Ak are the disjointk partitions ofA such

that the sum of squares is minimized, then the corre-
spondingk disjoint partitions of V is given by takingfai[1]; ai[2]; aig for each ai in every subset ofA. We
also restrict the cost functionfi to be the same as is
in MINIMUM SUM OF SQUARES:

�Pv2Vi s(v)�2 wheres(ai[1]) = s(ai[2]) = 0 and therefore,s(v) = s(a) forv 2 Vi and a 2 Ai. This ensures that the partitionV1; V2; :::; Vk gives minimum sum of squares of the cost
function.

Conversely, ifV1; V2; :::; Vk is a disjointk partition ofG
with minimum sum of squares of the cost function, the corre-
sponding disjointk partition of setA is given by choosing
those verticesai such thatfai[1]; ai[2]; aig = v for somev 2 Vi. Hence the minimum sum of squares for the cost
function overk disjoint partitions ensures that the sum of
squares ofs(a) onk disjoint set ofA is also minimized. We
conclude that the Partition problem for distributed systems
is NP-Complete.

